Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 4, 2026
-
Abstract Trace fossils record foraging behaviors, the search for resources in patchy environments, of animals in the rock record. Quantification of the strength, density, and nature of foraging behaviors enables the investigation of how these may have changed through time. Here, we present a novel approach to explore such patterns using spatial point process analyses to quantify the scale and strength of ichnofossil spatial distributions on horizontal bedding planes. To demonstrate the utility of this approach, we use two samples from the terminal Ediacaran Shibantan Member in South China (between 551 and 543 Ma) and the early Cambrian Nagaur Sandstone in northwestern India (between 539 and 509 Ma). We find that ichnotaxa on both surfaces exhibited significant nonhomogeneous lateral patterns, with distinct levels of heterogeneity exhibited by different types of trace fossils. In the Shibantan, two ichnotaxa show evidence for mutual positive aggregation over a shared resource, suggesting the ability to focus on optimal resource areas. Trace fossils from the Nagaur Sandstone exhibit more sophisticated foraging behavior, with greater niche differentiation. Critically, mark correlation functions highlight significant spatial autocorrelation of trace fossil orientations, demonstrating the greater ability of these Cambrian tracemakers to focus on optimal patches. Despite potential limitations, these analyses hint at changes in the development and optimization of foraging at the Ediacaran/Cambrian transition and highlight the potential of spatial point process analysis to tease apart subtle differences in behavior in the trace fossil record.more » « less
-
The Ediacara Biota—the oldest communities of complex, macroscopic fossils—consists of three temporally distinct assemblages: the Avalon (ca. 575–560 Ma), White Sea (ca. 560–550 Ma), and Nama (ca. 550–539 Ma). Generic diversity varies among assemblages, with a notable decline at the transition from White Sea to Nama. Preservation and sampling biases, biotic replacement, and environmental perturbation have been proposed as potential mechanisms for this drop in diversity. Here, we compile a global database of the Ediacara Biota, specifically targeting taphonomic and paleoecological characters, to test these hypotheses. Major ecological shifts in feeding mode, life habit, and tiering level accompany an increase in generic richness between the Avalon and White Sea assemblages. We find that ∼80% of White Sea taxa are absent from the Nama interval, comparable to loss during Phanerozoic mass extinctions. The paleolatitudes, depositional environments, and preservational modes that characterize the White Sea assemblage are well represented in the Nama, indicating that this decline is not the result of sampling bias. Counter to expectations of the biotic replacement model, there are minimal ecological differences between these two assemblages. However, taxa that disappear exhibit a variety of morphological and behavioral characters consistent with an environmentally driven extinction event. The preferential survival of taxa with high surface area relative to volume may suggest that this was related to reduced global oceanic oxygen availability. Thus, our data support a link between Ediacaran biotic turnover and environmental change, similar to other major mass extinctions in the geologic record.more » « less
An official website of the United States government
